
Copyright 1985

	

Richard Conn

ZCPR3 and IOPs

A Tutorial on
Input/Output Packages
for the ZCPR3 User

Written by
Richard Conn

8/5/85
ZCPR3 and IOPs is Copyright 1985 Richard L. Conn. This document
may be freely distributed among Z-System users, but must not be
reproduced for commerical use without a license from the
publisher. Contract Echelon, Inc. for terms and conditions.

P R E F A C E

It has been over a year since the release of
ZCPR3, and I have been using IOPs extensively in my
work with and on the system since then. In many
discussions with ZCPR3 users, it has been evident
that the IOP concept and the uses of the IOP is not
clear. While ZCPR3: The Manual (the reference book
on ZCPR3) covers IOPs in some detail, we felt even
more explanation was needed. Consequently, the
purpose of this document is to discuss the use and
implementation of IOPs in more detail. This docu-
ment also provides a useful supplement to the docu-
mentation on the TERM III Communications System
(contact Echelon, Inc.).

This document is written for an experienced
ZCPR3 user with assembly language programming
experience. Knowledge of the use and internal
operation of ZCPR3 is necessary. The references
section provides pointers to sources of more
information on ZCPR3, ZRDOS, and the Z-System.

Richard Conn
July 31, 1985

(PAGE INTENTIONALLY BLANK)

ZCPR3 and IOPs

A Tutorial on
Input/Output Packages
for the ZCPR3 User

Written by
Richard Conn

Copyright 1985

	

Richard Conn

Distributed by:
Echelon, Inc.
101 First Street
Los Altos, CA 94022
415/948-3820

Z-Node Central:
415/489-9005

(PAGE INTENTIONALLY BLANK)

T A B L E

	

O F

	

C O N T E N T S

1. The Concept of an IOP.................... 1-1
1.1.

	

The BIOS.............. 1-1
1.2.

	

Devices and Device Drivers 1-3
1.3. Advantages of an IOP............1-4

2. IOP Initialization by the BIOS 2-1
3. Design and Implementation of an IOP............ 9......3-1

3.1. IOP Jump Table.................3-1
3.2.

	

IOP Status and Control Routines.................. 3-2
3.2.1. STATUS......................3-2
3.2.2.

	

SELECT............ 3-3
3.2.3.

	

NAMER........................ 3-4
3.2.4.

	

INIT...................................... 3-5
3.3.

	

BIOS Interface Routines 3-5
3.3.1.

	

CONST..................................... 3-5
3.3.2.

	

CONIN........... 3-6
3.3.3.

	

CONOUT.................................... 3-6
3.3.4.

	

LIST............ 3-6
3.3.5.

	

PUNCH 3-6
3.3.6.

	

READER 3-7
3.3.7.

	

LISTST...................... 3-7
3.4.

	

IOP Patch............... 3-7
3.5.

	

IOP Recorder Routines 3-8
3.5.1. COPEN.........3-8
3.5.2.

	

CCLOSE.................................... 3-9
3.5.3. LOPEN.................3-9
3.5.4.

	

LCLOSE............. 3-9
4. Analysis of a Sample IOP............................. .4-1

4.1. Analysis of the Sample IOP Source 4-1
4.1.1. STATUS, SELECT, and NAMER Routines 4-1
4.1.2. Initialization and Device Drivers 4-2
4.1.3.

	

BIOS Interface Routines 4-3
4.1.4.

	

IO Recorder4-3
4.1.5.

	

Hardware Combinations 4-4
4.1.6.

	

IOP

	

Patching 4-4
4.1.7.

	

Adding Device Drivers4-5
4.2.

	

Terminal

	

Session 4-5
5. Extensions to the Original IOP Concept 5-1

5.1.

	

Internally Naming an IOP......................... 5-1
5.2.

	

Using Device Drivers in the BIOS 5-1

APPENDICES
A. References .. A-1

A.1.

	

ZCPR3 and

	

Z-System................... A-1
A.2.

	

CP/M................ A-2
A.3.

	

Other A-2
A.4. Addresses of Some Publishers A-2

B. Source Code for a Sample IOP.................. B-1
B.1.

	

Sample

	

IOP

	

SourceB-1
B.2.

	

Terminal

	

SessionB-13

I N D E X............... Index-1

i

(PAGE INTENTIONALLY BLANK)

1. The Concept of an IOP

_Input/Output Packages (IOPs) are segments of the Z-System
(ZCPR3 with, optionally, the ZRDOS replacement for the CP/M BDOS)
which contain groups of Input/Output device drivers for the
Console, Reader, Punch, and List logical devices. A Z-System can
contain several System Segments:

System Segment

	

Brief Description
Environment Descriptor

	

Provides information about the
Z-System

Terminal Capabilities

	

Provides information on how to
(TCAP or Z3T) Data

	

control the user's terminal
Named Directory Buffer

	

Contains data relating directory
(NDR)

	

names to disks and user areas
Resident Command

	

Contains a group of commands
Package (RCP)

	

that stays resident in memory
Flow Command Package

	

Contains IF, ELSE, FI (End IF), and
(FCP)

	

XIF (Exit all IFs) commands
Input/Output Package

	

Contains device drivers for the
(IOP)

	

logical devices

FIGURE: Z-System Segments

All System Segments associated with a Z-System are optional,
but the installation of the Environment Descriptor and Terminal
Capabilities segments is highly recommended, and all System
Segments should be installed in order to realize the full
potential of the Z-System.

1.1. The BIOS

The BIOS is the system-dependent part of a CP/M or Z-System.
A CP/M BIOS is functionally identical to a Z-System BIOS. The
BIOS is divided into two parts: a jump table at the beginning of
the BIOS and the routines which implement the BIOS functions
within the body of the BIOS. The jump table provides a
transportable method of accessing the routines within the BIOS.
The base address of the BIOS jump table is found by subtracting 3
bytes from the address at memory locations 1 and 2. Knowing that
all jumps in the table are three bytes long and in a specific
order, access to any of the routines in the BIOS can be acquired
by determining the offset of the desired BIOS routine from the
base address of the BIOS jump table and adding this offset to the
base address. The following figure outlines the structure of the
BIOS jump table:

1-1

FIGURE: The BIOS Jump Table

Each of the BIOS routines is precisely defined. The
functions of the routines, the registers used to pass input data
to the routines, the registers used to pass output data from the
routines, and the side effects caused by the execution of the
routines are known from documentation available through a variety
of sources (see the references in Appendix A).

From the BIOS Jump Table figure, it is apparent that there
are three groups of routines:

1. the initialization routines (COLD and WARM)
2. the character input/output routines (including

LISTST)
3. the disk access/control routines (including SECTRAN)

A Z-System supporting an IOP places the second group of
routines, the character input/output routines (including LISTST),
into the body of the IOP rather than the body of the BIOS. The
BIOS jump table is identical in format to that of a standard
BIOS, but the addresses of the character input/output routines
are addresses of entry points in the IOP rather than addresses of
routines in the body of the BIOS. The IOP, like the BIOS,
consists of a jump table followed by the routines of the IOP.
The jump table entries in the BIOS. for the character input/output
routines address the jump table entries in the IOP, which in turn
address the routines in the IOP.

1-2

ZCPR3 and IOPs A Tutorial

Class Offset Mnemonic Comment
Hex Dec

Bootstrap 00 0 BOOT "Cold" (first-time) boot
Routines 03 3 WBOOT "Warm" ("'C) boot

06 6 CONST Console input status
Character 09 9 CONIN Console input character
Input/Output OC 12 CONOUT Console output.character
Routines OF 15 LIST List output character

12 18 PUNCH Punch output character
15 21 READER Reader input character

18 24 HOME Home disk heads
Disk 1B 27 SELDSK Select logical disk
Access/Control 1E 30 SETTRK Set track number
Routines 21 33 SETSEC Set sector number

24 36 SETDMA Set DMA address
27 39 READ Read sector (128 bytes)
2A 42 WRITE Write sector (128 bytes)

List Status 2D 45 LISTST List output status

Sector Xlate 30 48 SECTRAN Sector translation

ZCPR3 and IOPs

	

A Tutorial

1.2. Devices and Device Drivers

Consider the following: DO NOT THINK OF A DEVICE AS A PIECE
OF HARDWARE, LIKE A CRT OR PRINTER. Instead, think in terms of
device drivers, where the device is a logical entity consisting
of zero or more pieces of hardware.

	

The device is defined by a
piece of software in a BIOS or IOP, and this piece of software is
called a device driver. Device drivers are software, and devices
are physical or logical hardware entities.

The BIOS supports this concept directly. The CONOUT
(console output) routine outputs to a device called a "console".
This "console" is assumed by many users to be a CRT, but it does
not have to be.

	

It could be:

1. a CRT
2. a modem
3. a null routine (bit-bucket, or simple return)
4. a CRT and modem in parallel (output goes to both

a CRT and a modem before the CONOUT routine
returns to its caller)

5. a CRT and printer in parallel (output goes to both
a CRT and a printer)

6. a CRT, modem, and printer in parallel (output goes
to all three)

There are many other possibilities, and in applications like
a Remote Access System (RAS) where the console is a modem and
various users access the computer over a telephone line, the
number of possibilities grows quickly. Some RAS console devices
could be:

1. a modem which also monitors a timer and reboots
the system when a time period elapses

2. a CRT/modem combination where input comes from
either the CRT or modem and output goes to
both in parallel

3. a CRT/modem combination where input comes from
the CRT and output goes to the CRT and modem
in parallel

4. a modem which does not allow certain characters
(like "C) to be accepted as input

5. a modem which also monitors a carrier detect
line and reboots the microcomputer if this
carrier signal is lost (the user hangs up)

A typical microcomputer running the Z-System supports a CRT,
a modem, and a printer (at least), and the number of console
devices which are possible is significantly greater than four.
The capacity of the standard I/O byte (which supports at most
four consoles) has been exceeded.

1-3

ZCPR3 and IOPs

	

A Tutorial

1.3. Advantages of an IOP

The IOP provides flexibility not found under conventional
implementations of device I/O in the BIOS (with or without the
I/O Byte). While designing ZCPR3, I found the need for the IOP
to be pronounced. Relying on the BIOS for all the device I/O
support was too restrictive:

1. the BIOS had to fit on the system tracks, so it
was tight on space

2. the BIOS had no hooks (via the standard I/O Byte)
to provide for more than four console, four
reader, four punch, and four list devices

The implementation of the IOP eliminates both of these
restrictions. All device drivers which were previously in the
BIOS could now be placed within the IOP. The burden of
initializing the IOP on cold boot was added to the BIOS, but this
new overhead was far less than the overhead of the character I/O
code which was replaced.

The IOP Buffer, being external to the BIOS, can be sized to
meet the user's needs. Usually 1K or 1.5K bytes is adequate for
most needs (Echelon has standardized on a length of 1.5K bytes).
A large number of devices can be supported in this amount of
space, and the LDR command allows an indefinite number of IOPs to
be loaded as needed into the IOP buffer.

Finally, the IOP is name-oriented. All devices in an IOP
can be referred to by name through the DEV and DEVICE commands of
ZCPR3. DEV and DEVICE simplify the user's access to and
selection of devices in an IOP, allowing him to review all
possible device selections and select the desired devices by
specifying a meaningful name. Each IOP contains its own set of
device names and explanatory comments, so remembering which
devices are available in a particular IOP is unnecessary.

1-4

2. IOP Initialization by the BIOS

The functions of the Z-System BIOS which uses an IOP are:

1. to initialize the IOP and other System Segments
of the Z-System in the cold boot routine

2. to address into the IOP for all of its
character input/output routines from the
BIOS jump table

3. to support all disk routines
4. to load the Multiple Command Line buffer with a

command sequence which performs further
initialization (and loading) of the ZCPR3
system (including the System Segments)

The BIOS must store a simple IOP into the IOP buffer in
memory, and this IOP will be replaced with a more complete IOP
when the default command line is executed after the BIOS cold
boot procedure completes. This default command line usually
contains a ZCPR3 alias which includes an invocation of the LDR
program to load a SYS.IOP segment. The following figures show
some sample code which performs an IOP initialization. The BIOS
jump table which addresses into an IOP is also shown.

iop

copyiop:

FIGURE: Sample IOP Buffer Initialization in the BIOS
Cold Boot Routine

2-1

equ Of600h ; Address of IOP Buffer
lxi h,iodrivers ; Default IOP Jump Table in BIOS
lxi d,iop ; Location of IOP Buffer
mvi b,11*3 . ; Size of jump table (11 3-byte

% jumps)

mov a,m ;Copy IOP jump table from BIOS
stax d ; into IOP Buffer
inx h
inx d
dcr b
jnz copyiop
... ; other code in cold boot routine
ret

ZCPR3 and IOPs

	

A Tutorial

Primitive I/O Drivers which are loaded at Cold Boot time.

iodrivers:
iopstat:

iopsel:

iopname:

iopinit:

The following routines are jumped into from the BIOS jump
table

iconst:

iconin:

iconout:

ilist:

ipunch:

ireader:

ilistst:

FIGURE (con't): Sample IOP Buffer Initialization in the BIOS
Cold Boot Routine

2-2

xra a ; no IOP Status Routine
ret
db 0 ;fill out 3 bytes for jump table
xra a ; no IOP Select Routine
ret
db 0 ;fill out 3 bytes for jump table
xra a ; no IOP Namer Routine
ret
db 0 ; fill out 3 bytes for jump table
ret ; Initialize Terminal
db 0,0 ; Fill 3 bytes

xra a ; Console Input Status
ret ; indicate that no char is pending
db 0 ; Fill 3 bytes
xra a ; Console Input Character
ret ;return a binary 0
db 0
ret ;Console Output Character
db 0,0 ; Fill 3 bytes
ret ; List Output Character
db 0,0 ; Fill 3 bytes
ret ;Punch Output Character
db 0,0 ; Fill 3 bytes
xra a ; Reader Input Character
ret ; return a binary 0
db 0
on Offh ; List Status
ret ; this always returns with A=OFFH

ZCPR3 and IOPs

	

A Tutorial

iop

FIGURE: Sample BIOS Jump Table in Support of an IOP

With the code from both of these figures in the BIOS, the
IOP is properly initialized and the BIOS is configured to use the
IOP for all of its character input/output functions. The IOP
presented in these figures, however, is extremely simple and only
acts as a place holder to keep the system from crashing until the
LDR program runs to load a useful IOP.

The LDR program must execute automatically on cold boot, and
this is ensured under the Z-System by placing a command which
runs LDR on an IOP in the Multiple Command Line Buffer of ZCPR3.
Code which performs the proper initialization of the Multiple
Command Line Buffer (MCL) could look something like this:

2-3

equ Of600h ; Address of IOP Buffer

org bios ;BIOS starting address

jmp cboot ; Cold boot entry point (in BIOS)
jmp wboot ; Warm boot entry point (in BIOS)

jmp iop+12 ; Console status routine (in ION
jmp iop+15 ; Console input (in ION
jmp iop+18 ;Console output (in ION
jmp iop+21 ; List device output (in ION
jmp iop+24 ;Punch device output (in ION
jmp iop+27 ; Reader device input (in ION

jmp home ; Home drive (in BIOS)
jmp setdrv ; Select disk (in BIOS)
jmp settrk ; Set track (in BIOS)
jmp setsec ; Set sector (in BIOS)
jmp setdma ; Set DMA address (in BIOS)
jmp read ; Read the disk (in BIOS)
jmp write ; Write the disk (in BIOS)

jmp iop+30 ; List device status (in ION

jmp sectran ; Sector translation (in BIOS)

FIGURE: Sample MCL Buffer Initialization in the BIOS
Cold Boot Routine

The default command line could be an alias (like STARTUP),
where this alias contains the command "LDR SYS.IOP". Use of the
alias is the preferred technique since it adds flexibility and
ease of reconfiguration as the user's needs change. Once a Z-
System has cold booted, the STARTUP alias can easily be changed
to add or delete cold boot commands.

2-4

ZCPR3 and IOPs A Tutorial

cmdline equ Of200h ; address of MCL buffer

lxi h,defcmd ;address of default command line
lxi d,cmdline ; address of MCL buffer
mvi b,40 ; arbitrary 40 bytes

copymcl:
mov a,m ; Copy default MCL from BIOS
stax d ; into MCL Buffer
inx h
inx d
dcr b
jnz copymcl
... ; other code in BIOS
re t

defcmd: dw cmdline+4 ; address of first character to run
dw 0 ; filler
db ' LDR SYS.IOP',0 ; startup command line

3. Design and implementation of an IOP

An IOP is laid out in a manner similar to a BIOS. All IOPs
are divided into two parts:

1. a jump table at the front
2. a set of supporting routines after the jump table

All routines in an IOP are defined in terms of their
function, input parameters, output parameters, and side effects.
This chapter serves to document all routines within an IOP.

3.1. IOP Jump Table

The jump table of an IOP is organized as follows:

FIGURE: Jump Table and ID of an IOP

The IOP Status and Control routines are used to initialize
the IOP, determine the type of the IOP, obtain names of and
comments on devices contained within the IOP, and select devices
within the IOP. The ZCPR3 DEV and DEVICE utility commands
perform all of their functions through these four routines.

3-1

Section Offset Mnemonic Descrit•,tion of Routine
Hex Dec

IOP 00 0 STATUS IOP Status Reporting
Status 03 3 SELECT IOP Device Selection.
and 06 6 NAMER IOP Device Name Reporting
Control 09 9 INIT IOP Initialization

OC 12 CONST Console Input Status
OF 15 CONIN Console Input Character
12 18 CONOUT Console Output Character

BIOS 15 21 LIST List Output Character
Interface 18 24 PUNCH Punch Output Character

1B 27 READER Reader Input Character
lE 30 LISTST List Output Status

IOP Patch 21 33 PATCH Patch Console

24 36 COPEN Open Console Recorder
IOP 27 39 CCLOSE Close Console Recorder
Recorder 2A 42 LOPEN Open List Recorder

2D 45 LCLOSE Close List Recorder

IOP ID 30 48 ID IOP ID (5 bytes = Z3IOP)

ZCPR3 and IOPs

	

A Tutorial

The BIOS Interface routines in the IOP are the same as their
counterparts in the BIOS. The BIOS simply indexes into the IOP
at these routines (see the last chapter).

The IOP Patch routine is used to make temporary changes to a
particular console selection. It allows the caller to provide
his own drivers for a particular console and have the IOP call
these when this console is selected.

The IOP Recorder provides for the facility of sending all
output intended for a console or list device to a disk file and
remote computer as well. The RECORD utility command of ZCPR3
controls this function.

The IOP ID is used to identify the IOP System Segment to the
LDR command of ZCPR3. LDR will refuse to load an IOP into the
IOP Buffer if this ID is not present. The ID consists of the
five bytes 'Z310P'.

In all cases, the programmer must assume that (1) no
registers are preserved by calling routines in an IOP, (2) the
input and output parameter conventions presented in this document
are adhered to, and (3) any register not specified in an output
parameter list may be changed from its value before the call to
the IOP routine.

3.2. IOP Status and Control Routines

This section describes the Status and Control Routines of
the IOP. These routines are:

3.2.1. STATUS

Brief Description :
STATUS returns information on the four logical devices (CON,

RDR, PUN, and LST) supported by the IOP and the status of the IO
Recorder function of the IOP. An identifying number of the IOP
is also returned.

Discussion and Notes :
The IOP concept supports four logical devices, as a normal,

unmodified BIOS does. Associated with each logical device is a
byte pair which indicates how many device drivers are available
for the logical device and which device driver is currently
selected. This information is stored in a table as follows:

3- 2

Section Offset Mnemonic Description of Routine
Hex Dec

IOP 00 0 STATUS IOP Status Reporting
Status 03 3 SELECT IOP Device Selection
and 06 6 NAMER IOP Device Name Reporting
Control 09 9 INIT IOP Initialization

IOPTABLE:
CON: db count,assignment
RDR: db count,assignment
PUN: db count,assignment
LST: db count,assignment

ZCPR3 and IOPs

	

A Tutorial

In each case, "count" is the number of device drivers (0 to
255) available for the indicated logical device, and "assignment"
is the number (0 to count-1) of the device driver which is
currently assigned.

STATUS returns the base address (IOPTABLE) of this table in
the HL register pair.

STATUS also returns with register A=0 and the Zero Flag Set
if there is no I/O device support in the IOP. If there is I/O
device support, the Zero Flag is cleared (NZ) and A is an
indicator as follows:

MSB of A = 0

	

means

	

IO Recorder not available
MSB of A = 1

	

means

	

IO Recorder available
7 LSBs of A

	

mean

	

IOP Number (1..127)

If the IO Recorder routines are active, the most significant
bit (MSB) of register A is set. Each IOP must have a number
(selected by the implementer), and this is stored in the 7 least
significant bits (LSBs) of register A. This number is not used
by DEV, DEVICE, or RECORDER, and is of interest only to the
implementer to track his various IOPs.

Input Parameters : None
Output Parameters :

HL = Address of IOP Status Table
A = Flag

A=0 and Zero Flag Set (Z) if no I/O device support
A<>0 if I/O device support --

MSB of register A indicates if IO Recorder available
other bits of register A indicate IOP number

3.2.2. SELECT

Brief Description :
SELECT is used to select a particular IOP device driver to

be used for a given logical device.

Discussion and Notes :
Input parameters are passed in the BC register pair.
Register B is the logical device number, where CON = 0, RDR

= 1, PUN = 2, and LST = 3. Any value greater than 3 results in
no device selection and an error code.

Register C is the number of an IOP device driver to select.
Register C may take on any value from 0 to count-1, where 'count'
is the number of device drivers available for the given logical
device. The STATUS routine can be used to determine the value of
' count'.

On exit, register A is an error code.

Input Parameters :
B = number of logical device

CON = 0

	

RDR = 1
PUN = 2

	

LST = 3
C = number of device driver (0 to count-1, where count is

determined from the STATUS routine)

3-3

ZCPR3 and IOPs

	

A Tutorial

Output Parameters :
A=0 and Zero Flag Set (Z) if device selection error

(no device selected)
A=OFFH and NZ if selection made

3.2.3. NAMER

Brief Description :
NAMER returns the address of a string (sequence of bytes

terminated by a null, or binary 0) which describes a device
driver. This string may take one of two forms:

db

	

'NAME ',0

	

;device name only, all caps
or db

	

'NAME textual description',0 ;name with description

NAME must be followed by at least one space.

Discussion and Notes :
NAMER returns a string containing the name and optional

description of a device driverL The driver is referenced by a
logical device number passed in register B and a device driver
number passed in register C (same convention as for the SELECT
routine).

The string MUST consist of at least a name followed by a
space. Any text following this space is taken as a comment by
the DEV and DEVICE commands.

Register B is the logical device number, where CON = 0; RDR
= 1, PUN = 2, and LST = 3. Any value greater than 3 results in
no device selection and an error code.

Register C is the number of an IOP device driver to provide
the name for. Register C may take on any value from 0 to count-
1, where 'count' is the number of device drivers available for
the given logical device. The STATUS routine can be used to
determine the value of 'count'.

Input Parameters :
B = number of logical device

CON = 0

	

RDR = 1
PUN = 2

	

LST = 3
C = number of device driver (0 to count-1, where count is

determined from the STATUS routine)

Output Parameters :
HL = address of first character of a null-terminated

string which is structured in one of two ways:

db

	

' NAME ',0
or

	

db

	

' NAME textual description',0

A=Error code
A=0 and Zero Flag Set (Z) if device selection error

(B > 3 or C > count-1)
A=OFFH and NZ if valid device name string returned

3-4

ZCPR3 and IOPs

	

A Tutorial

3.2.4. INIT

Brief Description:
INIT initializes the devices controlled by the IOP.

Discussion and Notes :
INIT may perform any initializations required. These may

include:

1. DART/USART communications attributes (number of bits
to transmit, parity, etc)

2. baud rates
3. IO Recorder state (recommended to be set to OFF for

both console and list recording)
4. the initial assignment of the device drivers for

each logical device

Input Parameters: None
Output Parameters: None

3.3. BIOS Interface Routines

This section describes the BIOS Interface routines:

All of these routines support the same input
parameters as the BIOS.

and output

3.3.1. CONST

Brief Description :
CONST returns the input character status of the logical

console ICON) device.

Discussion and Notes :
Register A=OFFH if a character is available from the console

device. Register A=0 if no character is available.
Do not assume that the zero flag is set or reset. The value

of the A register is the only output parameter.

Input Parameters : None
Output Parameters

A=OFFH if character pending, A=O if no character pending

3-5

Section Offset Mnemonic Descrij-ption of Routine
Hex Dec

OC 12 CONST Console Input Status
OF 15 CONIN Console Input Character
12 18 CONOUT Console Output Character

BIOS 15 21 LIST List Output Character
Interface 18 24 PUNCH Punch Output Character

1B 27 READER Reader Input Character
lE 30 LISTST List Output Status

ZCPR3 and IOPs

	

A Tutorial

3.3.2. CONIN

Brief Description :
CONIN returns the next byte from the console. If none is

available at the time CONIN is called, CONIN will wait until a
byte becomes available.

Discussion and Notes :
Depending on the IOP device driver selection, CONIN may or

may not clear (set to zero) the MSB of the character returned.

Input Parameters : None
Output Parameters :

A = next byte available from the console

3.3.3. CONOUT

Brief Description:
CONOUT outputs the byte in register C to the console.

Discussion and Notes :
Depending on the selected device driver, the MSB of the byte

may or may not be cleared.

Input Parameters :
C = byte to output to the console

Output Parameters: None

3.3.4. LIST

Brief Description :
LIST outputs the byte in register C to the list device.

Discussion and Notes :
Depending on the selected device driver, the MSB of the byte

may or may not be cleared.

Input Parameters :
C = byte to output to the list device

Output Parameters: None

3.3.5. PUNCH

Brief Description:
PUNCH outputs the byte in register C to the punch device.

Discussion and Notes:
Depending on the selected device driver, the MSB of the byte

may or may not be cleared (set to zero).

Input Parameters :
C = byte to output to the punch device

Output Parameters: None

3-6

ZCPR3 and IOPs

	

A Tutorial

3.3.6. READER

Brief Description:
READER returns the next byte from the reader device.

Discussion and Notes :
Depending on the IOP device driver selection, READER may or

may not clear (set to zero) the MSB of the character returned.

Input Parameters : None
Output Parameters :

A = next byte available from the reader

3.3.7. LISTST

Brief Description :
LISTST returns the output status of the list device.

Register A=OFFH means that the list device is ready to output
another byte. Register A=0 means that it is not ready to output
another byte.

Discussion and Notes :
Like the CONST routine, LISTST does not necessarily affect

the Zero Flag. Only the value in the A register is affected.

Input Parameters : None
Output Parameters :

A = OFFH if the list device is ready to output another byte
A = 0

	

if the list device is not ready

3.4. IOP Patch

The IOP Patch routine is used to change the address of the
device driver for a particular console device. There is only one
IOP Patch routine:

Section

	

Offset

	

Mnemonic Description of Routine
Hex Dec

IOP Patch 21 33

	

PATCH

	

Patch Console

Brief Description :
PATCH allows the programmer to temporarily test an I/O

device driver by forcing the IOP to index into a trio of CONST,
CONIN, and CONOUT device drivers anywhere in memory.

Discussion and Notes :
This function is not required in an IOP and may be

implemented only if desired.
On input, the HL register pair contains the address of a

jump table structured as follows:
JMP ISTAT

	

; Input status (O=no byte, Offh=byte)
JMP INPUT

	

;Input character
JMP OUTPUT

	

;Output character
PATCH replaces an implementer-selected console device driver

with the indicated routines. Note that only one of the possible
console device drivers is replaced. Hence, when this console is

3-7

ZCPR3 and IOPs

	

A Tutorial

selected (by NAME - see the NAMER routine documentation), the
three indicated routines are called when the CONST, CONIN, and
CONOUT routines of the IOP are called.

Since only one console device driver is affected by this,
other console device drivers in the IOP are still available for
selection.

This feature of the IOP was implemented solely for the
purpose of testing a console device driver. Other applications,
particularly in the area of Remote Access Systems (RASs), are
possible.

Input Parameters :
HL = address of three-entry jump table

Output Parameters: None

3.5. IOP Recorder Routines

This section describes the IOP Recorder routines;

3.5.1. COPEN

Brief Description :
COPEN enables an IO Recorder for the console.

Discussion and Notes :
The nature of the recorder is up to the implementer of the

IOP. The name of a file may be passed in register pair DE, where
the file is named in an FCB which is structured as follows:

1, current disk = 0

0

If this information is to be used by the IO Recorder, it
should be copied into an FCB within the IOP for safe keeping.

Under ZRDOS-Plus, redirection of I/O to a disk file is
possible since ZRDOS-Plus supports one-level reentrancy.

Two applications of the console IO Recorder are:
1. redirection of characters going to the console

into a disk file
2. redirection of characters going to the console

into a physical device, such as a remote
computer

The STATUS routine of the IOP returns with the MSB of
register A set if the IOP supports IO Recording.

The COPEN function must be associated with all console
device drivers.

3-S

Section Offset Mnemonic DescriVeltion of Routine
Hex Dec
24 36 COPEN Open Console Recorder

IOP 27 39 CCLOSE Close Console Recorder
Recorder 2A 42 LOPEN Open List Recorder

2D 45 LCLOSE Close List Recorder

db disk ; disk A =
db ' FILENAME'
db ' TYP'
db 0
db user ; user 0 =

ZCPR3 and IOPs

	

A Tutorial

Input Parameters
HL = address of an FCB indicating the file (optional)

Output Parameters: None

3.5.2. CCLOSE

Brief Description:
CCLOSE terminates the console IO Recorder operation.

Discussion and Notes :
If COPEN recorded to a disk file, CCLOSE would close that

disk file.
If COPEN sent output to a device, such as remote computer,

CCLOSE may send a special control code to the device to instruct
it to terminate recording.

The CCLOSE routine must be associated with all console
device drivers.

Input Parameters: None
Output Parameters: None

3.5.3. LOPEN

Brief Description:
LOPEN opens the IO Recorder for the list device.

Discussion and Notes : See COPEN.
Input Parameters :

HL = address of FCB (optional)
Output Parameters: None

3.5.4. LCLOSE

Brief Description:
LCLOSE closes the IO Recorder for the list device.

Discussion and Notes : See COPEN and CCLOSE.
Input Parameters : None
Output Parameters: None

3-9

ZCPR3 and IOPs

	

A Tutorial

(PAGE INTENTIONALLY BLANK)

3- 1 0

4. Analysis of a Sample IOP

This chapter is a running commentary on the Sample IOP whose
source code is presented in Appendix B. All commentary is
referenced by the line numbers given in this source code.
Section 1 of Appendix B should be examined while reading through
this chapter.

4.1. Analysis of the Sample IOP Source

Lines 1 to 38 comprise the front of the IOP. Note the base
address of the IOP on line 6, the jump table on lines 16 to 34,
and the IOP ID on line 38. When LDR loads an IOP, it checks to
see that the proper number of jumps and that the IOP ID are
present.

4.1.1. STATUS, SELECT, and NAMER Routines

The STATUS, SELECT, and NAMER routines are in lines 49 to
130. It is through these routines that the external environment
determines the attributes of the IOP and issues device selection
commands to the IOP.

STATUS returns the address of the IOP Status Table
(IOPTABLE), which is shown in lines 43 to 47. This table is used
to determine how many device drivers for each logical device are
available and which device driver is currently selected. STATUS
also returns a value in A. The MSB of A is set if the IO
Recorder function of the IOP is supported. The rest of A
contains a number from 1 to 127 which is used by the IOP
implementer to identify the IOP. If the value of A is 0, then
the IOP is considered to be non-operational by the ZCPR3 tools
which address the IOP. The IOP number is not used by any ZCPR3
tools except to insure that this value is not zero.

SELECT is used to assign a device driver for a given logical
device. The logical device is identified by the B register, and
the desired driver is identified by the C register. B must have
a value from 0 to 3 or an error condition is returned (see lines
68 to 70). B=0 selects the CON device, 1 the RDR, 2 the PUN, and
3 selects the LST device.

Lines 68 to 78 are used to locate the byte pair associated
with a given logical device. Since IOPTABLE consists of two-byte
entries, the value of B (which is 0 to 3) is doubled (to 0, 2, 4,
6) and used as an offset from the base address of IOPTABLE. This
locates the desired byte pair. Lines 75 to 78 then compare the
maximum number of devices to the requested device, insuring that
the requested device number is within range. If not within
range, the error routine (SELERR) is branched to. If within
range, the pointer is advanced to the 2nd byte of the byte pair
(line 79), and the new device is selected by storing the contents
of C into the current selection byte (line 80).

4-1

ZCPR3 and IOPs

	

A Tutorial

NAMER is used to return a string which names a device driver
and optionally provides a description. Like the SELECT input,
NAMER expects a logical device number in B (0 to 3) and a device
driver number in C. The indexing and error checking in NAMER
(see lines 95 to 106) are similar to those in SELECT. Once
certain that B and C are within range, NAMER then indexes through
two address tables to locate the string.

The first table, IOPDNAMES, is addressed by the code in
lines 107 to 112. The table IOPDNAMES is in lines 136 to 140.
At line 107, DE contains the offset (0, 2, 4, 6) into the
IOPDNAMES table for the CON, RDR, PUN, and LST devices,
respectively. After line 112 is executed, HL contains the
address of a table of addresses for the strings associated with a
particular logical device. In this case, HL contains the value
of one of these symbols:

CONNAMES RDRNAMES PUNNAMES LSTNAMES

See lines 132 to 173 for a review of these tables.
Now that the address of the desired address table is known,

the code indexes into this table based on the device driver
identified in the C register. Lines 113 to 121 do this indexing.
Like the code in lines 96 to 112, the technique of doubling the
index value (in the C register at line 113) and then adding this
to HL, which contains the base address of the string address
table for a particular logical device, is applied. After line
117 is executed, HL contains the address of the address of the
desired string. Lines 118 to 121 simply extract the string's
address and return it in HL.

Note that, for the sake of debugging, the NAMERROR routine
not only returns the error code (A=0 and Zero Flag Set), but it
also returns the address of an Error Message in HL.

The strings in lines 161 to 172 provide names to the various
devices. Note that when no descriptions are provided (lines 161,
162, 167, 169, 171, and 172), the names are terminated by a space
followed by an ending 0 (the string terminator). Also note that
the names are capitalized.

4.1.2. Initialization and Device Drivers

The INIT routine in lines 174 to 181 is simple in this
example. It turns off the IO Recorder flags. In a different IOP
implementation, within the INIT routine would be code to
configure the DARTS (7 or 8 bits, parity or none, baud rate,
etc).

Lines 192 to 231 show the four basic routines for providing
I/O to the CRT hardware. Note that these examples show the CRT's
DART as being memory mapped (LDA and STA instructions are used
instead of IN and OUT), and the data and status values are
inverted (note the CMA instructions in lines 203, 211, 221, and
229). The values returned and the register conventions used are
compatible with those required for the BIOS routines like CONIN
and CONOUT (ie, passing output character in the C register).

Lines 234 to 275 show the four basic routines for providing
I/O to the modem hardware. These examples show the modem's DART
as being I/O mapped (IN and OUT are used). Similarly, lines 278

4-2

ZCPR3 and IOPs

	

A Tutorial

to 312 show the four basic routines for providing I/O to the
printer hardware.

4.1.3. BIOS Interface Routines

Lines 314 to 375 contain the routines entered from the jump
table which are indexed into from the BIOS. Namely, these
routines (lines 317 to 345) are:

CONST CONIN CONOUT LIST PUNCH READER
LISTST

In all cases, the input and status routines (CONST, CONIN,
READER, LISTST) return their values in the A register and require
no input values, and the output routines (CONOUT, LIST, PUNCH)
obtain the values to output from the C register.

	

Consequently,
since C carries the only input value, the same code (DRVRUN) can
be used to process all of the BIOS entry routines if DRVRUN does
not have an effect on the C register.

The routines are table-driven. DRVRUN accepts as input the
address of the table for the logical device in HL and the number
of the logical device in B (as for the SELECT and NAMER routines,
B contains a value from 0 to 3).

	

DRVRUN uses the value in B to
obtain the number of the currently-selected device driver from
the IOPTABLE (see lines 356 to 363). After line 363 is executed,
B contains the number of the desired device driver. Lines 364 to
367 then double this number (in order to use it as an offset),
and place it into DE. Line 368 obtains the address of the device
driver address table.

After line 368 is executed, HL contains the address of one
of the following tables:

TCONST TCONIN TCONOUT TLIST TREADER TPUNCH
TLISTST

DE contains the offset into the table pointed to by HL which,
when added to HL (line 369), provides the address of the address
of the device driver. Lines 370 to 373 obtain the address of the
device driver in HL, and line 374 (PCHL) transfers control to the
device driver.

Note the device driver tables in lines 376 to 416.

4.1.4. IO Recorder

The IO Recorder function is addressed in the BIOS Interface
Routines. Note the call to CRECORD in line 326 and LRECORD in
line 331. The code of CRECORD and LRECORD is in lines 443 to
454. Note that, in this particular implementation, CRECORD and
LRECORD simply send the character to be output to the Modem if
the CREC and LREC flags, respectively, are set. Remember the
initialization routine, INIT, in lines 177 to 181? All INIT did
was clear these flags so the IOP would not come up with recording
on.

In this implementation, the IO Recorder serves to send
output to the Modem as well as to the selected CONOUT or LIST
device. In operation, the user is expected to have run a program

4-3

ZCPR 3 and IOPs

	

A Tutorial

on the computer at the other end of the Modem connection which
receives characters, sends a - S when its buffer is full (note
that MODOUT in lines 263 to 275 pays attention to "S), writes its
buffer to disk, and then sends some other character (°Q) to
resume transmission through the MODOUT driver. The ZCPR3 command
line "RECORD ON" calls the COPEN routine (lines 460 to 463),
which simply sets the CREC flag to true. Likewise, "RECORD ON
PRINTER" calls the LOPEN routine (lines 470 to 473). "RECORD
OFF" calls the CCLOSE routine (lines 464 to 469) which clears the
CREC flag and sends a - Z to the modem (which tells the program
running there to close its file and exit).

	

Likewise for LCLOSE
(lines 474 to 479).

In looking back, I realize that MODOUT should have also
checked for the output of - Z and not allowed it so the recorder
on the computer tied to the modem would not accidentally
terminate operation. Slight oversight.

4.1.5. Hardware Combinations

The simple device drivers in lines 192 to 313 can be easily
combined into "hybrid" devices. The routines in lines 417 to 439
show such devices. CRTMODIST returns the input status from the
CRT and Modem in parallel. It indicates if a character is
pending on either device. CRTMODIN inputs a character from a CRT
and Modem combination, where the character input comes from the
CRT or the Modem, whichever receives a character first.
CRTMOUOUT outputs to the CRT and Modem in parallel (note that the
C register contains the character to output, and CRTOUT and
MODOUT do not affect the C register in lines 225-231 and 263-
275). CRTPRTOUT is similar to CRTMODOUT.

These combinations of devices are declared to the IOP
through the device driver tables (lines 376 to 415). Note that
the third console (selected driver is 2) is identified by
CRTMODIST (line 382) for input status, CRTMODIN (line 390) for
input, and CRTMODOUT (line 398) for output. This is the CRT and
Modem in parallel for both input and output. In contrast, the
fourth console (selected driver is 3) is identified by CRTISTAT
(line 383) for input status, CRTIN (line 391) for input, and
CRTPRTOUT (line 399) for output. This is the CRT input with CRT
and printer output.

4.1.6. IOP Patching

The PATCH routine is the last to be discussed. It is in
lines 484 to 500. Note that its sole purpose is to change the
addresses for the fifth console (selected driver is 4). The
addresses for PATISTAT, PATIN, and PATOUT are in lines 384, 392,
and 400, respectively.

PATCH is extremely useful in debugging candidate IOP
routines. The console can select the TEST device (via the SELECT
routine), the test can be done, and then the console can select
some other console device to restore order.

4-4

ZCPR3 and IOPs

	

A Tutorial

4.1.7. Adding Device Drivers

The sample IOP can be easily modified to add and remove
device drivers. The code for the device driver itself must be
added, and the following changes must be made:

1. modify the number of devices in IOPTABLE (lines 43-47)
2. modify the string address tables (lines 145-157)
3. modify the strings (lines 161-172)
4. modify the device driver tables (lines 376-415):

Console - Change TCONST, TCONIN, TCONOUT
Reader - Change TREADER
Punch

	

- Change TPUNCH
List

	

- Change MIST, TLISTST

4.2. Terminal Session

The terminal session in section 2 of Appendix B shows how
the IOP which was analyzed above is assembled and prepared for
use on a ZCPR3 system. The commands are discussed in order in
the following paragraphs.

The command "lasm samiop.bbz" assembles SAMIOP.ASM and
generates SAMIOP.HEX on drive B. The command "mload samiop" then
creates SAMIOP.COM from SAMIOP.HEX (the assembler output).

SAMIOP.COM is not a true COM file. It is ORGed at some
value other than 100H (see lines 6-11 in the Sample IOP listing).
The command "ren sample. iop= samiop.com " creates the desired IOP
file, with the file type of IOP.

SAMPLE.IOP is then loaded into the IOP buffer (and checked
for validity before the load) by the command "ldr sample.iop".
The IOP is now active (the INIT routine was called by LDR).

The command "dev d a" displays all devices. The device
names and any descriptive comments are clearly displayed.

The command "dev c test" selects the device named TEST as
the CONsole device. In SAMPLE.IOP, TEST is the device which can
be patched by PATCH, and it defaults to the CRT (which is why the
system is still running). The command which follows, "dev d c",
displays the console device names and current selection.

Finally, "dev c crt" reassigns the device named CRT to the
CONsole.

4-5

http://SAMIOP.COM
http://SAMIOP.COM
http://SAMIOP.COM
http://SAMIOP.COM
http://samiop.com
http://samiop.com

ZCPR3 and IOPs

	

A Tutorial

(PAGE INTENTIONALLY BLANK)

4-6

5. Extensions to the Original IOP Concept

Some proposals have been made concerning changes to the IOP
standard which promise to (1) enhance the capabilities of the IOP
and (2) make inter-system portability possible without the need
to reassemble the IOP. This section discusses these proposals.

5.1. Internally Naming an IOP

A name may be placed within an IOP after the Z3IOP text
without impacting the function of the IOP or affecting the
operation of tools which interact with the IOP. This name is a
string of ASCII characters terminated by a null (binary 0).
Tools may read this name to determine if a specific IOP which

Discussion : This extension does not impact the operation of
any IOP tool which manipulates an IOP in the standard fashion
(that is, only through the JMP table). No impact on any of the
standard ZCPR3 tools has been identified. This extension is
advantageous:

1. Special-purpose tools can be created to work
with special-purpose IOPs.

2. The functionality of special-purpose IOPs can
be greatly extended with the ability to adopt standards
for special buffer areas which follow the name. For
example, an IOP with the name of TIME may be designed
where the bytes following the "DB ' TIME',0" contain the
current time in some format.

_Co nclusion : This extension is a good idea and is adopted.
No impact on any existing software is made.

Acknowledgment : Thanks to Joe Wright for this proposal.

5.2. Using Device Drivers in the BIOS

The basic philosophy of an IOP is that it removes all device
drivers for the CON:, RDR:, PUN:, and LST: logical devices from
within the BIOS. Situations exist, however, in which it is
desirable to leave the device drivers in the BIOS and have the
IOP simply act as a front-end to them. The BIOS jump table
entries branch into the IOP, the IOP performs some preprocessing
function (such as I/O redirection into a disk file), and then the

5-1

they are designed to interact with has been loaded. The old and
new IOP structures are compared:

Old IOP New IOP Comments
JMP xxx JMP xxx ; standard
... .. <-; jump
JMP xxx JMP xxx ; table
DB ' Z3IOP' DB ' Z3IOP' <-- IOP identifier
code DB 'NAME',0 <-- CHANGE: IOP Name

ZCPR3 and IOPs

	

A Tutorial

IOP branches back into the BIOS in order to perform the original
intended function (such as console output). The device drivers
for the logical devices are all or partially in the BIOS, and the
IOP's purpose is to (1) intercept the BIOS calls before the
device drivers in the BIOS process them and (2) perform some
front-end function. Pictorially:

BIOS Call originated by code external to BIOS

V
BIOS Jump Table Vectors into IOP

V
IOP Performs Front-End Function

V
IOP Vectors Back into BIOS for Device Driver Function

A standard, transportable method of accessing the device
drivers within the BIOS is required. That is, an IOP must know
how to find the required device drivers once it is loaded. The
following proposal is made:

1. An internal 'l ump table must be placed within the BIOS.
The addresses in these JMPs are the addresses of the device
drivers residing in the BIOS. Note that the order of the JMPs is
the same as the order of the JMPs following the Warm Boot JMP in
the BIOS jump table. In this example, the base address of the
BIOS is at the label BIOS, and the base address of the IOP buffer
is at the label IOP. The address of the label IOPRET is
somewhere within the BIOS after the BIOS jump table. The
following figure compares the internal jump table with the BIOS
jump table.

< more JMPs for Disk I/O >

2. Since the device drivers are already in the BIOS, the
cold boot routine will initialize the IOP area to use these
drivers. The following jump table and code is copied by the BIOS
cold boot routine into the IOP buffer at the base address of the
IOP buffer. A copy operation like this would be done to
initialize the IOP jump table for any IOP implementation.

5-2

Internal Jam? Table BIOS Jump
BIOS:

Table

JMP COLD$BOOT
IOPRET: JMP WARM$BOOT

JMP CONST JMP IOP+12 ; CONST
JMP CONIN imp IOP+15 ;CONIN
JMP CONOUT imp IOP+18 ; CONOUT
JMP LIST JMP IOP+21 ; LIST
JMP PUNCH JMP IOP+24 ;PUNCH
JMP READER JMP IOP+27 ; READER
JMP LISTST JMP IOP+30 ; LISTST

ZCPR3 and
lops

	

A Tutorial

Initial lop Jump Table (Installed at Cold Boot)

Offset
From

lop
Code

	

Comments
lop:

The JMPs at offsets 12-30 branch back into the BIOS. No
other

lop
functions are implemented.

3. During the execution of the Cold Boot routine, the
address of the JMP at BIOS will be set to the value of IOPRET.
Two instructions are required to do this:

LXI H,IOPRET ;GET ADDRESS OF IOPRET
SHLD BIOS+1

	

;STORE IT IN BIOS JMP TABLE

The only time that most systems transfer control to the JMP
at BIOS is at power-on or reset. This change in the BIOS jump
table (the JMP to COLD$BOOT now jumps to IOPRET, which in turn
jumps to CONST) should have no effect on most systems. The
benefit is that an

lop
can now look at the address at BIOS+1 and

determine where the IOPRET jump table is. With this knowledge,
the

lop
can access the routines in the IOPRET jump table for the

support it requires.
lops can be moved from system to system without the need to

be reassembled. An
lop

generation program can obtain the address
of the

lop
buffer from the ZCPR3 Environment Descriptor and

generate an
lop

which will execute correctly when placed in that

5-3

0 XRA A ; RETURN "NOT IMPLEMENTED" VALUE
RET ; OCCUPIES 3 BYTES IN PLACE OF A JMP
NOP

3 XRA A ; THERE ARE FOUR BEGINNING JUMPS
RET
NOP

6 XRA A ; JMP 3
RET
NOP

9 XRA A ; JMP 4
RET
NOP

12 JMP IOPRET ;CONST ROUTINE WITHIN THE BIOS
15 JMP IOPRET+3 ;CONIN
18 JMP IOPRET+6 ;CONOUT
21 JMP IOPRET+9 ; LIST
24 JMP IOPRET+12 ;PUNCH
27 JMP IOPRET+15 ;READER
30 JMP IOPRET+18 ; LISTST
33 DB 0,0,0 ;3 NOPS TO REPLACE REMAINING JMPS
36 DB 0,0,0
39 DB 0,0,0
42 DB 0,0,0
45 XRA A ; NOT IMPLEMENTED

RET
NOP

48 DB ' Z3IOP'

ZCPR3 and IOPs

	

A Tutorial

buffer. SPR (System Page Relocatable) formats or other
relocation techniques can be used. Once the IOP begins
executing, it can determine the address of the BIOS and index
into the jump table at IOPRET as required.

Discussion : The only possible problem which has been
identified is that the original cold boot address may be required
for some purpose unique to a particular system. This proposal is
reasonable and permits the transportability of IOPs at the
binary level. Several IOPs (such as PKEY) have been implemented
using this technique since this proposal was made, and no
problems have been detected to my knowledge.

Care must be taken to use IOPs designed to obtain device
driver support from the address at the BIOS cold boot routine
ONLY on systems which have been installed as indicated above. If
this is not done, the I/O support for a system will fail. It is
suggested that the IOP generator be written to contain a test to
insure that the BIOS cold boot address points to an IOPRET jump
table. This test may be as simple as checking to see that there
are seven JMP instructions starting at IOPRET.

Conclusion : This proposal does not impact the basic
philosophy of the IOP design in any way. The original
functionality of the IOP concept is retained and extended in an
upward-compatible fashion. The proper safeguards should be taken
in the design of the IOP generators.

This extension is approved and adopted.
Acknowledgment : Thanks to Joe Wright for this proposal.

5-4

ZCPR3 and IOPs

	

A Tutorial

A. References

A.1. ZCPR3 and Z-System

Echelon, Inc.
101 First Street
Los Altos, CA 94022
415/948-3820

-- Echelon is the commercial agent for ZCPR3 and provides
many services for ZCPR3 and Z-System users. ZCPR3, the Z-System,
Z-System tools, ZCPR3: The Manual , ZCPR3: The Libraries (not yet
released), and many other ZCPR3 and Z-System products can be
purchased from Echelon. Echelon publishes a newsletter to the
ZCPR3 user community every two weeks. It monitors and supports
ZCPR3 users through Remote Access Systems (Electronic Bulletin
Boards) such as Z-Node Central and other (over forty) Z-Nodes
around the world.

Z-Node Central
415/489-9005

-- Z-Node Central is the main Remote Access System used by
Echelon. It supports electronic mail facilities and file
transfer. Questions regarding ZCPR3 and the Z-System can be
submitted via electronic mail. Data on Echelon (including lists
of services and prices for products) is available. A list of
people willing to spend time in helping others in bringing up a
ZCPR3 and a Z-System is maintained here. Much of the information
on Z-Node Central is distributed to all the other Z-Nodes around
the world.

BOOKS and PAMPEff.ETS

Conn, Richard. ZCPR3 and IOPs , copyright 1985, published by
Echelon, Inc., 50 pages (free from Z-Nodes).

Conn, Richard.

	

ZCPR3: The Libraries , copyright 1985, not
yet published, 400+ pages (contact Echelon for price).

Conn, Richard. ZCPR3: The Manual , copyright 1985, published
by Zoetrope, Inc., 351 pages, typeset, bound (contact Echelon for
price).

Gaude', Frank. Z-News (Echelon Newsletter), published every
two weeks by Echelon, Inc., 4 to 12 pages (free from Z-Nodes).

McCord, David. Z3&BYE , copyright 1985, published by
Echelon, Inc., 10 pages (free from Z-Nodes).

McCord, David. ZNODE.CFG , copyright 1985, published by
Echelon, Inc., 10 pages (free from Z-Nodes).

Wright, Dennis.

	

ZRDOS Programmer's Guide , copyright 1985,
published by Echelon, Inc., 35 pages (contact Echelon for price).

A-1

ZCPR3 and IOPs

	

A Tutorial

A.2. CP/M

Hogan, Thom. Osborne CP/M User Guide , copyright 1981,
published by Osborne/McGraw-Hill, 200+ pages (contact
Osborne/McGraw-Hill).

Johnson-Laird, Andy. The Programmer's CP/M Handbook ,
copyright 1983, published by Osborne/McGraw-Hi11, 400+ pages
(contact Osborne/McGraw-Hill).

A.3. Other

Booch, Grady. Software Engineering with Ada , copyright
1983, published by Benjamin/Cummings, 450+ pages (contact
Benjamin/Cummings).

Kernighan, Brian and Plauger, P.J. The Ele ments of
Programming Style, 2nd Edition , copyright 1978, published by
McGraw-Hill, 150+ pages (contact McGraw-Hill).

Kernighan, Brian and Plauger, P.J. Soft ware Tools ,
copyright 1976, published by Addison-Wesley, 300+ pages (contact
Addison-Wesley).

Leventhal, Lance. Z80 Assembly Language Programming ,
copyright 1979, published by Osborne/McGraw-Hill, 400+ pages
(contact Osborne/McGraw-Hill).

Osborne, Adam. An Introduction to Microcomputers, Volume _1:
Basic Concepts, 2nd Edition , copyright 1980, published by
Osborne/McGraw-Hi11, 400+ pages (contact Osborne/McGraw-Hill).

A.4. Addresses of Some Publishers

Benjamin/Cummings Publishing Company
2727 Sand Hill Road
Menlo Park, CA 94025

Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, CA 94710

A-2

http://A.2.CP/M
http://A.2.CP/M

ZCPR3 and IOPs

	

A Tutorial

B. Source Code for a Sample IOP

This Appendix presents the source code of a sample IOP which
has been tested and used. The lines are numbered for reference
purposes. Also, the assembly, linking, and loading (by LDR) and
use of the IOP is illustrated by a terminal session.

B.1. Sample IOP Source

1: ;
2: ; SAMPLE IOP for study
3: ; by Richard Conn
4: ; 7/14/85
5: ;
6: iop

	

equ

	

OECOOH ; base address of IOP
7: ;
8: ctrls equ

	

' S'-'@' ;"S
9: etrlz equ

	

' Z'-'@' ;"Z
10: ;

B-1

11: org iop
12:
13: ;
14: ; The IOP jump table
15: ;
16: imp status
17: imp select
18: imp namer
19: imp init
20: ;
21: imp const
22: imp conin
23: imp conout
24: imp list
25: imp punch
26: imp reader
27: imp listst
28: ;
29: imp patch
30: ;
31: imp copen
32: imp cclose
33: imp lopen
34: imp lclose
35: ;
36: ; IOP ID (required for LDR)
37: ;
38: db ' Z3IOP'

ZCPR3 and IOPs

	

A Tutorial

39:
40: ;
41: ; The following is the IOP Status Table
42: ;
43: ioptable:
44: con:

	

db

	

5,0

	

;5 consoles, select console 0
45: rdr:

	

db

	

1,0

	

;1 reader, select reader 0
46: pun:

	

db

	

1,0

	

;1 punch, select punch 0
47: lst:

	

db

	

2,0

	

; 2 lists, select list 0
48:
49: ;
50: ; The status routine
51: ;

	

Return the address of the IOP Status Table in HL
52: ;

	

Return the IOP number in A
53: ;

	

This IOP supports recording, so set MSB of A
54: ;
55: status:
56:

	

lxi

	

h,ioptable

	

;pointer to table
57:

	

mvi

	

a,82h

	

;IO Recorder supported, IOP 2
58:

	

ora

	

a

	

;set NZ flag
59: ret
60:
61: ;
62: ; The select routine
63: ;

	

On input, B=logical device and C is driver
64: ;

	

On output, A=0 and zero flag set if error
65: ;
66: select:
67:

	

lxi

	

h,ioptable

	

;pt to IOP table
68:

	

mov

	

a,b

	

;double B so offset is 0,2,4,6
69:

	

cpi

	

4

	

;make sure in range 0-3
70: jnc selerr
71: add b
72:

	

mov

	

e,a

	

; DE = offset
73: mvi d,0
74:

	

dad

	

d

	

;HL now points to device in IOP
75:

	

mov

	

a,m

	

; get max number of devices
76:

	

cmp

	

c

	

; check for driver error
77:

	

jZ

	

selerr

	

;error if C = count
78:

	

jc

	

selerr

	

;error if C > count
79:

	

inx

	

h

	

; point to selected device byte
80:

	

mov

	

m,c

	

;select the device
81:

	

mvi

	

a,0ffh

	

; set OK return code
82: ora a
83: ret
84: selerr:
85:

	

xra

	

a

	

;set error return code
86: ret
87:

B-2

ZCPR3 and IOPs

	

A Tutorial

88: ;
89: ; The Namer Routine
90: ;

	

On input, B = logical device and C = driver
91: ;

	

On output, HL = address of name string
92: ;

	

On output, A=0 and Zero Flag Set if error
93: ;
94: namer:
95:

	

lxi

	

h,ioptable

	

;check to see that , C is
96:

	

mov

	

a,b

	

; in range ... begin by
97:

	

cpi

	

4

	

; doubling B to 0,2,4,6
98:

	

jnc

	

namerror

	

; after making sure in
99:

	

add

	

b

	

; range 0-3
100:

	

mov

	

e,a

	

;add offset to HL
101: mvi d,0
102:

	

dad

	

d

	

;HL now points to IOP Table
103:

	

mov

	

a,m

	

;get max device count
104: cmp c
105:

	

jz

	

namerror

	

;error if C = count
106:

	

jc

	

namerror

	

;error if C > count
107:

	

lxi

	

h,iopdnames

	

;get address of logical
108:

	

dad

	

d

	

; name table
109: mov em
110: inx h
111: mov d,m
112:

	

xchg

	

;HL now points to logical
113:

	

mov

	

a,c

	

; name table - double C
114:

	

add

	

c

	

; to get device driver name
115: mov e,a
116:

	

mvi

	

d,0

	

;DE = offset
117:

	

dad

	

d

	

;HL now points to driver name
118:

	

mov

	

em

	

; address - get string address
119:

	

inx

	

h

	

; in DE
120: mov d,m
121:

	

xchg

	

; HL now has string name address
122:

	

mvi

	

a,Offh

	

; set no error
123: ora a
124: ret
125: namerror:
126:

	

lxi

	

h,errmsg

	

;pt to some message
127:

	

xra

	

a

	

; set error code
128: ret
129: errmsg:
130:

	

db

	

'Name Error',O
131:

B-3

ZCPR3 and IOPs

	

A Tutorial

132: ;
133: ; This table gives the addresses of the address
134: ; tables for each of the logical devices
135: ;
136: iopdnames:
137: dw connames
138: dw rdrnames
139: dw punnames
140: dw lstnames
141: ;
142: ; These tables give the addresses of each of the
143: ; logical device name strings
144: ;
145: connames:
146:

	

dw

	

connl

	

;there are 5 consoles
147:

	

dw

	

conn2

	

; (see IOPTABLE above)
148: dw conn3
149: dw conn4
150: dw conn5
151: rdrnames:
152:

	

dw

	

rdrnl

	

;there is 1 reader
153: punnames:
154:

	

dw

	

punnl

	

;there is 1 punch
155: lstnames:
156:

	

dw

	

listnl

	

;there are 2 lists
157: dw listn2
158: ;
159: ; These are the actual text strings returned by NAMER
160: ;
161: connl: db

	

' CRT ',0
162: conn2: db

	

'MODEM ',0
163: conn3: db

	

'CRTMOD CRT and Modem in Parallel',0
164: conn4: db

	

'CRTPRT CRT in and CRT/Printer out',0
165: conn5: db

	

'TEST CRT by default',0
166: ;
167: rdrnl: db

	

'MODEM ',0
168: ;
169: punnl: db

	

'MODEM ',0
170: ;
171: listnl: db

	

'PRINTER ',0
172: listn2: db

	

'MODEM ',0
173:

B-4

ZCPR3 and IOPs A Tutorial

174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:

This routine

init:

This system has three pieces
1. a CRT
2. a modem
3. a printer

All devices are hypothetical
The following are the simple

crtdata
crtstat
crtrda
crttbe

1. CRT

Return input status in A (A=0 means no char
crtistat:

lda
cma
ani
rz
mvi
ret

Return output
crtostat:

lda
cma
ani
rz
mvi
ret

Return input
crtin:

crtstat

crtrda

a, Offh

status

crtstat

crttbe

a, Offh

;check input status
; status is inverted
;mask for RDA
;0 if no char pending
;return OFFH if char pending

in A (A=0 means not ready for output)

;check output status
;status is inverted
; mask for TBE
;0 if not ready
OFFH if ready

byte in A (A=byte)

mvi a,O
sta crec
sta lrec
ret

equ
equ
equ
equ

call

	

crtistat

	

;wait for input
jz crtin
Ida

	

crtdata ;get byte
cma

	

;data is inverted
ani 7fh ; mask
ret

initializes the devices in the IOP

OF800H+3F8H

	

;CRT data port
OF800H+3F9H

	

;CRT status port
4

	

;RDA bit
8

	

;TBE bit

;set no IO Recording active
;console off
;list off

of hardware connected:

device drivers for them

available)

B- 5

ZCPR3 and IOPs A Tutorial

224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264:
265:
266:
267:
268:
269:
270:
271:
272:
273:
274:
275:

Output byte in C to device
crtout:

call crtostat
jz crtout
mov a,c
cma
sta crtdata
ret

2. Modem

moddata equ

	

80H
modstat equ

	

81H
modrda equ 2
modtbe equ

	

1

Return input
modistat:

in modstat
ani modrda
rz
mvi

	

a, Offh
ret

Return output status in
modostat:

in modstat
ani modtbe
rz
mvi

	

a, Offh
ret

Return input byte in
modin:

call
jz
in
ret

Output byte
modout:

call modistat
jz modoutl
call modin
cpi ctrls
jnz modoutl
call modin

modoutl:
call
jz
mov
out
ret

status in A (A=0 means no char available)

;check input status
; mask for RDA
;0 if no char pending
;return OFFH if char pending

;check output status
; mask for TBE
0 if not ready
;OFFH if ready

A (A=byte)

modistat
modin
moddata ;get byte

;wait for input

in C to device with simple XON/XOFF Processing

modostat
modout
a,c ;get
moddata ;put

;get char from C
;invert data
;put byte

; Modem data port
; Modem status port
;RDA bit
;TBE bit

A (A=0 means not ready

;see if char pending
;continue if not
;get char
;see if -S
;continue if not
; wait for any next char

;wait for ready

;wait for ready

for output)

char from C
byte

B-6

ZCPR3 and IOPs

	

A Tutorial

276:
277:
278: ;
279: ; 3. Printer
280: ;
281: prtdata equ

	

20H

	

;Printer data port
282: prtstat equ

	

25H

	

;Printer status port
283: prtrda equ

	

1

	

;RDA bit
284: prttbe equ

	

20H

	

;TBE bit
285:
286: ; Return input status in A (A=0 means no char available)
287: prtistat:
288:

	

in

	

prtstat ;check input status
289:

	

ani

	

prtrda ;mask for RDA
290:

	

rz

	

;0 if no char pending
291:

	

mvi

	

a,Offh ;return OFFH if char pending
292: ret
293: ; Return output status in A (A=0 means not ready for output)
294: prtostat:
295:

	

in

	

prtstat ;check output status
296:

	

ani

	

prttbe ;mask for TBE
297:

	

rz

	

;0 if not ready
298:

	

mvi

	

a,Offh ;OFFH if ready
299: ret
300: ; Return input byte in A (A=byte)
301: prtin:
302:

	

call

	

prtistat

	

;wait for input
303: jz prtin
304:

	

in

	

prtdata ;get byte
305: ret
306: ; Output byte in C to device
307: prtout:
308:

	

call

	

prtostat

	

;wait for ready
309: jz prtout
310:

	

mov

	

a,c

	

;get char from C
311:

	

out

	

prtdata ;put byte
312: ret
313:

B- 7

ZCPR3 and IOPs

	

A Tutorial

314: ;
315: ; The following are the device selection routines
316: ;
317: const:
318:

	

lxi

	

h,tconst

	

;point to driver table
319:

	

mvi

	

b,0

	

;CON device
320:

	

imp

	

drvrun

	

;run driver
321: conin:
322: lxi h,tconin
323: mvi b,0
324: imp drvrun
325: conout:
326:

	

call

	

crecord

	

;send char to recorder if on
327: lxi h,tconout
328: mvi b,0
329: imp drvrun
330: list:
331:

	

call

	

lrecord

	

;send char to recorder if on
332: lxi h,tlist
333:

	

mvi

	

b,3

	

;LST device
334: imp drvrun
335: punch:
336: lxi h,tpunch
337:

	

mvi

	

b,2

	

;PUN device
338: imp drvrun
339: reader:
340: lxi h,treader
341:

	

mvi

	

b,l

	

;RDR device
342: imp drvrun
343: listst:
344: lxi h,tlistst
345:

	

mvi

	

b,3

	

;LST device

B- 8

B-9

ZCPR3 and IOPs A Tutorial

346: ;
347: ; The following routine selects the desired driver
348: ; On input, B=logical device number
349: ; IOPTABLE is used to find the current driver
350: ; On input, HL=address of driver table
351: ; Driver table contains address of all drivers
352: ; which can be selected
353: ;
354: drvrun:
355: push h ;save ptr to driver table
356: lxi h,ioptable ; get selected driver number
357: mov a,b ;double B for offset
358: add b
359: mov e,a
360: mvi d,0
361: dad d ;HL pts to IOPTABLE entry
362: inx h ; HL pts to selected driver
363: mov b,m ;get selected driver in B
364: mov a,b ; (C not used because it can
365: add b ; contain a character if output
366: mov e,a ; driver is being called)
367: mvi d,0
368: pop h ;HL pts to driver table
369: dad d ;HL pts to desired driver address
370: mov e,m
371: inx h
372: mov d,m
373: xchg ; HL pts to driver
374: pchl ; run the driver
375:

ZCPR3 and IOPs A Tutorial

376: ;
377: ; These are the device driver tables
378: ;
379: tconst:
380:

	

dw

	

crtistat

	

;selected driver 0 is CRT
381:

	

dw

	

modistat

	

;selected driver 1 is Modem
382:

	

dw

	

crtmodist

	

;selected driver 2 is CRT/Modem
383:

	

dw

	

crtistat

	

;selected driver 3 'is CRT in,
383:

	

; Printer out
384: patistat:

	

;patch point for PATCH routine
385:

	

dw

	

crtistat

	

;selected driver 4 is CRT
386: ;
387: tconin:
388: dw crtin
389: dw modin
390: dw crtmodin
391: dw crtin
392: patin:

	

;patch point for PATCH routine
393: dw crtin
394: ;
395: tconout:
396: dw rrtout
397: dw modout
398: dw crtmodout
399: dw crtprtout
400: patout:

	

;patch point for PATCH routine
401: dw crtout
402: ;
403: tlist:
404:

	

dw

	

patout

	

;selected driver 0 is Printer
405:

	

dw

	

modout

	

;selected driver 1 is Modem
406: ;
407: treader:
408:

	

dw

	

modin

	

;selected driver 0 is Modem
409: ;
410: tpunch:
411:

	

dw

	

modout

	

;selected driver 0 is Modem
412: ;
413: tlistst:
414:

	

dw

	

prtostat

	

;selected driver 0 is Printer
415:

	

dw

	

modostat

	

;selected driver 1 is Modem
416:

B-1 0

ZCPR3 and IOPs

	

A Tutorial

417: ;
418: ; This is the driver set for the combination CRT/Modem Device
419: ; and the combination CRT/Printer Output Device
420: ;
421: crtmodist:
422:

	

call

	

crtistat

	

;see if char available on CRT
423:

	

rnz

	

;return if so
424:

	

call

	

modistat

	

;see if char available on Modem
425: ret
426: crtmodin:
427:

	

call

	

crtistat

	

;look for CRT char
428:

	

jnz

	

crtin

	

;get char from CRT
429:

	

call

	

modistat

	

;look for Modem char
430:

	

jnz

	

modin

	

;get char from Modem
431:

	

imp

	

crtmodin

	

;continue until CRT or Modem
431:

	

; gives char
432: crtmodout:
433:

	

call

	

crtout

	

;send to CRT
434:

	

call

	

modout

	

; send to Modem
435: ret
436: crtprtout:
437:

	

call

	

crtout

	

; send to CRT
438:

	

call

	

prtout

	

;send to Printer
439: ret
440: ;
441: ; These are the drivers for the recorder output device
442: ;
443: crecord:
444:

	

lda

	

crec

	

;check flag
445:

	

ora

	

a

	

; 0 means not recording
446: rz
447:

	

call

	

modout

	

;send char to modem to record
448: ret
449: lrecord:
450:

	

lda

	

lrec

	

; check flag
451:

	

ora

	

a

	

; 0 means not recording
452: rz
453:

	

call

	

modout

	

;send char to modem to record
454: ret

B-1 1

455: ;456: ; These are the routines which enable device recording
457: ; For this IOP, Console and Printer recording amounts to
458: ;

	

sending characters to the modem
459: ;
460: copen:
461:

	

mvi

	

a,Offh

	

;set flag
462: sta crec
463: ret
464: cclose:
465:

	

mvi

	

a,0

	

;clear flag
466: sta crec
467:

	

mvi

	

c,ctrlz

	

;send "Z to modem
468: call modout
469: ret
470: lopen:
471:

	

mvi

	

a,Offh

	

;set flag
472: sta lrec
473: ret
474: lclose:
475:

	

mvi

	

a,0

	

;clear flag
476: sta lrec
477:

	

mvi

	

c,ctrlz

	

;send "Z to modem
478: call modout
479: ret
480: ;
481: crec:

	

ds

	

1

	

;flag buffer
482: lrec:

	

ds

	

1

	

;flag buffer
483:
484: ;
485: ; This is the patch routine
486: ; It sets the 5th device driver (driver select 4) to
487: ;

	

the drivers whose jump table is pointed to by
488: ;

	

HL; HL points to a table like the following:
489: ;

	

imp

	

ISTAT
490: ;

	

imp

	

INPUT
491: ;

	

imp

	

OUTPUT
492: ;
493: patch:
494:

	

shld

	

patistat

	

;set address of input status
495:

	

lxi

	

d,3

	

;offset of 3
496: dad d
497:

	

shld

	

patin

	

;set address of input char
498: dad d
499:

	

shld

	

patout

	

;set address of output char
500: ret
501:
502: end

B-12

ZCPR3 and IOPs

	

A Tutorial

B.2. Terminal Session

B1:ASM>lasm samiop.bbz
LINKASM AS OF 7/06/81

SAMIOP
SAMIOP
EEAD
006H use factor
502 input lines read
End of assembly

B1:ASM>mload samiop
MLOAD ver. 2.4

	

Copyright (C) 1983, 1984, 1985
by NightOwl Software, Inc.
Loaded 683 bytes (02ABH) to file B1-.SAMIOP.COM
Start address: ECOOH Ending address: EEACH Bias: OOOOH
Saved image size: 768 bytes (0300H, - 6 records)

++ Warning: program origin NOT at 100H ++

B1:ASM>ren sample.iop=samiop.com

B1:ASM>ldr sample.iop
ZCPR3 LDR, Version 1.3
Loading SAMPLE.IOP

B1:ASM>dev d a

RDR: Devices --
MODEM -

Assignment is MODEM

Strike Any Key PUN: Devices --
MODEM -

Assignment is MODEM
LST: Devices --

MODEM -
PRINTER -

Assignment is PRINTER

B1:ASM>dev c test
CON: Assignment is TEST

B-13

CON: Devices --
TEST - CRT by default
CRTPRT - CRT in and CRT/Printer out
CRTMOD - CRT and Modem in Parallel
MODEM -
CRT -

Assignment is CRT

http://B1-.SAMIOP.COM
http://B1-.SAMIOP.COM
http://samiop.com
http://samiop.com

ZCPR3 and IOPs

	

A Tutorial

B1:ASM>dev d c

CON: Devices --
TEST

	

- CRT by default
CRTPRT

	

- CRT in and CRT/Printer out
CRTMOD

	

- CRT and Modem in Parallel
MODEM -
CRT -

Assignment is TEST

Bl:ASM>dev c crt
CON: Assignment is CRT

B-1 4

ZCPR3 and IOPs

	

A Tutorial

B
Basic Input/Output System, 1-1
BIOS, 1-1
Cold Boot, 2-3
IOP Overhead in, 2-1
Jump Table, 1-2, 2-3
Organization, 1-2
Sample IOP Initialization Code for, 2-1

C
Cold Boot, 2-1
Command Line
Default, 2-4

Command Line Buffer, 2-3
CON, 3-2
CP/M, 1-1

E
Environment Descriptor, 1-1

F
FCP, 1-1
Flow Command Package, 1-1

I N D E X

D
Default Command Line, 2-4
Device, 1-3, B-5, B-6, B-7, B-9, B-10, B-11
Device Driver, 1-3, 4-2, B-9, B-10, B-11

Examples for Consoles, 1-3
Examples for Remote Access Systems, 1-3
Examples in Sample IOP, B-5, B-6, B-7

Device Name String, 3-4, B-4

I
Input/Output Package, 1-1
IO Recorder, 3-3, 4-3, B-11, B-12
IOP, 1-1
Accessing via DEV, B-13, B-14
Advantages of, 1-4
Assembly of, B-13
BIOS Interface Routines, 3-5, 4-3, B-8
BIOS Jump Table in Support of, 2-3
Buffer, 1-4
Compared to the BIOS, 1-2
Count, 3-3, 3-4, B-2
Identifying Number, 3-2, B-2
Initialization of, 2-1, B-5
IO Recorder, 3-2, 3-3, 4-3, B-2, B-11, B-12
Jump Table, 3-1, B-1
Linking of, B-13
Loading of, B-13
Number, 3-2, B-2
STATUS, 3-3, B-2
Status and Control Routines, 3-2, B-2, B-3, B-4

Index-1

ZCPR3 and IOPs

IOP Routine

COPEN, 3-8, 4-3, B-12
INIT, 3-5, 4-2, B-5
LCLOSE, 3-9, 4-3, B-12
LIST, 3-6, 4-3, B-8

B-4

J
Jump Table of BIOS, 1-2

L
LDR, 1-4, 2-3
Logical Device, 3-2, 3-3, 3-4
LST, 3-2

M
MCL, 2-3
Multiple Command Line Buffer, 2-3

A
Named Directory Buffer, 1-1
NDR, 1-1

P
PUN, 3-2

R
RAS, 1-3, 3-8
RCP, 1-1
RDR, 3-2
Recorder, 3-3
Remote Access System, 1-3, 3-8
Resident Command Package, 1-1

Index-2

CCLOSE, 3-9, 4-3, B-12
CONIN, 3-6, 4-3, B-8
CONOUT, 3-6, 4-3, B-8
CONST, 3-5, 4-3, B-8

LISTST, 3-7, 4-3, B-8
LOPEN, 3-9, 4-3, B-12
NAMER, 3-4, 4-1, B-3,
PATCH, 3-7, 4-4, B-12
PUNCH, 3-6, 4-3, B-8
READER, 3-7, 4-3, B-8
SELECT, 3-3, 4-1, B-2
STATUS, 3-2, 4-1, B-2

ZCPR3 and IOPs
	

A Tutorial

S
STARTUP Command, 2-1
STATUS, 3-8
String
Device Name, 3-4

System Segment, 1-1
Environment Descriptor, 1-1
Flow Command Package, 1-1
Input/Output Package, 1-1
Named Directory Buffer, 1-1
Resident Command Package, 1-1
Terminal Capabilities Data, 1-1

T
TCAP, 1-1
Terminal Capabilities Data, 1-1

Z
Z-System, 1-1
System Segment, 1-1

Z3T, 1-1
ZCPR3, 1-1
ZRDOS, 1-1, 3-8
ZRDOS-Plus, 3-8

Index- 3

